Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 04, Issue 02, June-2021
Available at www.rjetm.in/

Software Defect Prediction based on Classification Rule Mining
Bhushan Bhartit, Narendra Parmar? and Deepak Pathak®

Department of Computer Science and Engineering
Sri Satya Sai College of Engineering, RKDF University, Bhopal, India
*bhushanbharti76@gmail.com
2 narendrapcst@gmail.com
3deep_325@yahoo.com

* Corresponding Author: Bhushan Bharti Manuscript Received: Manuscript Accepted:

Abstract: Software development has seen a tremendous growth in recent years. And just like any other thing every
software has several defects. These defects may be of different types and different nature depending upon their locations.
These defects or bugs can be eliminated greatly during the testing phase. The testing phase is one of the most important
phased of the development life cycle of software. If the defects are timely detected and acted upon it can save a lot of
time, cost and resources of the development team. Here in this paper we have used Classification Rule Mining as a tool
for prediction of software defects and the results are compared with previous research in this field.

Keywords: Defect Prediction, Classification, Rule Mining

l. Introduction

Any Software is said to be good software if it is defect free. Software with defects serves no purpose in the industry and in
our lives. The demand for quality software is increasing with time. So it becomes very challenging and important task for
the software developers to develop defect and error free software. Defects in software systems continue to be a major
Challenge [1].Software defect prediction is an important aspect in this regard. The most important aspect of software
defect prediction and its elimination is the knowledge of the location of the defect. Software defect prediction is
the process of locating defective modules in software. Machine learning classification algorithm is an accepted technique
for software fault prediction [2]. A defect can be corrected only if the developer knows its exact location. And it is
very important to detect the location and rectify the errors or defects during the development phase of the
software because once implemented it does take extra manpower, resources and thus increases the cost of the
software. Most commonly the defects lie in different smaller components of the software, so it is a crucial task
for the testing team to identify the location and eliminate the errors. If the locations of the possible defects are
identified during the development phase, it becomes very easy to get rid of them.

I1. Related Work

Our main aim shall be to discuss the work done in the area of software defect prediction and finding out
possible solutions to avoid or correct those defects and faults. This is important because software with defects
is largely considered as poor quality software.

In 2006, Bibi, Tsoumakas, Stamelos, Vlahavas, applied an approach of machine learning to the defects
estimation problem which they called as the Regression via Classification (RvC) [3].The whole process of
Regression via Classification (RvC) comprises two important stages

1. It is a method in which the problem of classification is turned into a problem of classification. The
target values are converted into classes using a process of discretization.
2. The class output is then reversed to find out the prediction in numerical form.

Menzies, Greenwald, and Frank (MGF) [4] suggesting in their research in 2007 where Rule Induction and
Naive Bayes machine learning algorithms were compared and their performances were analyzed to pre
determine the possible defects in components of software under study.

In 2007, MLT(Multilayer Perceptron), Voting feature Intervals(VFI) and NB were used by Oral and Bener
[5] for prediction of Embedded Software Defects using seven sets of data for their research In 2007, lker
Gondra [6] used a machine learning methods for defect prediction. He used Artificial neural network as a
machine learner.

In 2011, CBA i.e. Classification based Association was used or prediction of Defects in software by Baojun, Karel [7].
The rules generated for CBA-RG classification Association Rules

In [8], predictive models are estimated based on various code attributes to assess the likelihood of software modules
containing errors. Many classification methods have been suggested to accomplish this task.

Ahmet Okutan [9] have used Bayesian networks to determine the probabilistic influential relationships among
software metrics and defect proneness. The software metrics used in Promise data repository, define two more metrics,
i.e. number of developers for the number of developers and lack of coding quality for the source code quality. Mrinal

41 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 04, Issue 02, June-2021

Bhushan Bharti et al.

Singh Rawat et al [10] identified causative factors which in turn suggest the remedies to improve software quality and
productivity.

I11. Proposed Methodology

To construct a model for prediction of software defects, we must first finalize which algorithm or
scheme of learning can be used to build that model. This is to ensure the predictive capability of the
prediction model that we propose to construct. These steps are very crucial, avoiding which may result in
poor performing prediction model with non-reliable prediction and decisions. As a consequence, we use a
software defect prediction framework that provides guidance to address these potential shortcomings.

The framework consists of two components:
1. Scheme Evaluation

2. Defect Prediction

Scheme Evaluation

Historical
Data

3.1Scheme Evaluation

The scheme evaluation is a fundamental part of the software defect prediction framework. At this stage, different
learning schemes are evaluated by building and evaluating learners with them. The first problem of scheme evaluation is
how to divide historical data into training and test data. As mentioned above, the test data should be independent of the
learner construction. This is a necessary precondition to evaluate the performance of a learner for new data. Cross-
validations usually used to estimate how accurately a predictive model will perform in practice. One round of cross-
validation involves partitioning a data set into complementary subsets, performing the analysis on one subset, and
validating the analysis on the other subset. To reduce variability, multiple rounds of cross-validation are performed using
different partitions, and the validation results are averaged over the rounds.

3.1.1 Scheme Evaluation Algoritm

Data: Historical Data Set

Result: The mean performance values
1 M=12 :No of Data Set
2i=1;

42 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 04, Issue 02, June-2021

Bhushan Bharti et al.

3 while i<=M do

4 Read Historical Data Set D[iJ;

5 Split Data set Instances using % split;
6 Train[i] =60% of D; % Training Data;
7 Learning (Train[i], scheme);

8 Test Data=D[i]-Train[i]; % Test Data;
9 Result=TestClassier(Test[i],Learner);
10end

3.2 Defect Prediction

The defect prediction required extensive research and study of the system and the system components
under the probation. The process of the defect prediction is not so easy as it seems. It consists of two
stages. The first is the construction of prediction model with a predictor and the second stage is the
defect prediction. The defect prediction part of our framework is straightforward; it consists of predictor
construction and defect prediction. The prediction model construction involves.

1. A training scheme is build using the historical data and previous performances
2. A predictor is then constructed which helps in the training of data for prediction of defects using

previous learning and historical data. This step involves various small tasks like the preprocessing of data
and several other tasks for making the data set ready for evaluation of any prediction. The data and the code
is then validated and evaluated at several steps for any defect or bug. The predictor plays a very vital role in
this process.

After the predictor is constructed, new data are preprocessed in same way as historical data, then the
constructed predictor can be used to predict software defect with preprocessed new data.

3.3 Data Set

We used the data taken from the public NASA MDP repository, which was also used by MGF and many others, e.g.,
[11], [12], [13], [14].Thus, there are 12 data sets in total from NASA MDP repository. Table 4.1 and 4.2 provides some
basic summary information. Each data set is comprised of a number of software modules (cases), each containing the
corresponding number of defects and various software static codes attributes. After preprocessing, modules that
contain one or more defects were labeled as defective. A more detailed description of code attributes or the origin of
the MDP data sets can be obtained from.

IV. Result Discussion

We have compared the accuracy and preciseness of our framework with that of others on different
parameters and attributes. Comparison in respect of different classification algorithms have also been
described below.

4.1 Accuracy

Below is a table 4.1, which is for accuracy. Here we can see different classification algorithms have
provided different level of accuracy on different data set. But the overall performances of all are almost
same.

43 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 04, Issue 02, June-2021

Bhushan Bharti et al.

Methods | NB LOG | DT JRip | OneR | PART | J48 | J48G
CM1 83.94 | 87.68 | 89.13 | 86.23 | 89.13 | 73.91 | 86.23 | 86.96
IM1 81.28 | 82.02 | 81.57 | 81.42 | 79.67 | 81.13 | 79.8 | 79.83
KC1 83.05 | 86.87 | 84.84 | 84.84 | 83.29 | 83.89 | 85.56 | 85.56
KC3 775 | 71.25 75 76.25 | 71.25 | 81.25 80 82.5
MC1 94.34 | 99.27 | 99.25 | 99.22 | 99.3 | 99.19 | 99.3 | 993
MC2 66 66.67 | 56.86 | 56.86 | 56.86 | 70.59 | 52.94 | 54.9
MW1 79.25 | 77.36 | 85.85 | 86.79 | 85.85 | 88.68 | 85.85 | 85.85
PC1 88.82 | 92.11 | 92.43 | 89.14 | 9145 | 89.8 | 87.83 | 88.49
pPC2 94.29 |1 99.05 | 99.37 | 99.21 | 99.37 | 99.37 | 989 | 98.9
PC3 34.38 | 84.67 | 80.22 | 82.89 | 82.89 | 82.67 | 82.22 | 83.56
PC4 g7.14 | 91.79 | 90.18 | 90.36 | 90.18 | 88.21 | 88.21 | 88.93
PC5 96.56 | 9693 | 97.01 | 97.28 | 969 | 9693 | 97.13 | 97.16

Table 4.1 Accuracy
4.2 Sensitivity

The performance of NB Tree algorithm is apparently better from the other algorithms as visible in
the accuracy table 4.2 below.

The other algorithms have almost an average overall performance.

Methods | NB LOG DT JRip | OneR | PART | J48 | J48G
CM1 0.4 0.267 0 0.2 0.133 | 0.333 0.2 0.2
IM1 0.198 | 0.102 | 0.07 | 0.157 | 0.109 | 0.03 | 0.131 | 0.123
KC1 0.434 | 0238 | 0.197 | 0.328 | 0.254 | 0.32 0.32 | 0.32
KC3 0.412 | 0.412 | 0.118 | 0.118 | 0.176 | 0.353 | 0.353 | 0.353
MC1 0.548 | 0.161 | 0.194 | 0.161 | 0.161 | 0.194 | 0.161 | 0.161
MC2 0.571 | 0.545 0 0 0.091 0.5 0.045 | 0.045
MW1 0.429 | 0.286 | 0.429 | 0.143 | .071 0.286 | 0.214 | 0.214
PC1 0.28 0.24 0.16 0.16 0.08 0.36 024 | 0.24
PC2 0.333 0 0 0 0 0 0 0
PC3 0.986 | 0.178 0 0233 | 0.014 | 0.137 | 0.288 | 0.283
PC4 0.431 | 0.538 | 0.231 | 0.508 | 0.323 | 0.677 | 0.692 | 0.677
PC5 0.427 | 0.308 | 0.332 | 0.521 | 0.303 | 0.474 | 0.498 | 0.479

Table 4.2 Sensitivity

4.3 Specificity

Below is the table for specificity where some algorithms are showing almost 100% which is only
ideal condition and cannot be treated for reality. These predictions of such algorithms may be
misleading and wrong.

44 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 04, Issue 02, June-2021

Bhushan Bharti et al.

Methods | NB | LOG DT JRip | OneR | PART | J48 | J48G
CM1 0.893 | 0.951 1 0943 | 0.984 | 0.789 | 0.943 | 0.951
IM1 0956 | 0988 | 0.99 | 0968 | 0.957 | 0.994 | 0.954 | 0.956
KC1 0.898 | 0.976 | 0.959 | 0937 | 0.932 | 0.927 | 0.947 | 0.947
KC3 0.873 | 0.794 | 0921 | 0937 | 0.857 | 0.937 | 0.921 | 0.952
MCl1 0.947 1 0.999 | 0.999 1 0.999 1 1
MC2 0.724 | 0.759 1 1 0.931 | 0.862 | 0.897 | 0.931
MW1 0.848 | 0.848 | 0924 | 0.978 | 0.978 | 0.978 | 0.957 | 0.957
PC1 0943 | 0982 | 0.993 | 0957 | 0.989 | 0.946 | 0.935 | 0.943
pPC2 0.946 | 0.997 1 0.998 1 1 0.995 | 0.995
PC3 0219 | 0976 | 0958 | 0944 | 0.987 | 0.96 | 0.926 | 0.942
pPC4 0929 | 0968 | 0.99 | 0956 | 0.978 | 0.909 | 0.907 | 0.917
PC5 0.983 | 0.99 | 0.991 | 0.987 099 | 0985 | 0.986 | 0.987

Table 4.3 Specificity

4.4 Comparison with other’s result

110

—4—NB
——Log

Accuracy(%)

~—#— PART

—— 148G

i
i
i
i
i

M1 M1 KC1 KC3 MC1I MC2 MW1 PCl PC2 PC3 PC4 PC5S

34

Data Sets

Figure 4.1 Accuracy

08

ENB

| mLog

Sensitivity(pd)
=

B PART
mJ48G

Figure 4.2 Specificity

45 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), VVolume 04, Issue 02, June-2021

Il.
In our research work we have attempted to solve the Software defect prediction problem through different Data

Bhushan Bharti et al.

Conclusion & Future Work

mining (Classification) algorithms. In our research NB and Logistic algorithm gives the overall better performance for
defect prediction. PART and J48 gives better performance than OneR and JRip . From these results, we see that a data
preprocessor/attribute selector can play different roles with different learning algorithms for different data sets and that
no learning scheme dominates, i.e., always outperforms the others for all data sets. This means we should choose
different learning schemes for different data sets, and consequently, the evaluation and decision process is important. In
order to improve the efficiency and quality of software development, we can make use of the advantage of data mining to
analysis and predict large number of defect data collected in the software development.

References

[1] Parvinder S. Sandhu, Sunil Khullar, Satpreet Singh, Simranjit K. Bains, Manpreet Kaur, Gurvinder Singh, "A Study on Early Prediction of Fault
Proneness in Software Modules using Genetic Algorithm", World Academy of Science, Engineering and Technology, 2010, pp. 648-653.

[2] Jang, J-S. R., (1993), “ANFIS-Adaptive-Network Based Fuzzy Inference System”, IEEE Transactions on Systems, Man and Cybernatics, 23(3),
pp 665-685.

[3] S Bibi, G Tsoumakas, | Stamelos, and | Vlahavas. Software defect prediction using regression via classification. In IEEE International Conference
on, pages 330—336, 2006.

[4] Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static code attributes to learn defect predictors. Software Engineering, |IEEE
Transactions on, 33(1):2-13, 2007.

[5] Ata,c Deniz Oral and Ay,se Ba,sar Bener. Defect prediction for embedded software. In Computer and information sciences, 2007. iscis 2007.
22nd international symposium on, pages 1-6. IEEE, 2007.

[6] Iker Gondra. Applying machine learning to software fault-proneness prediction. Journal of Systems and Software, 81(2):186-195, 2008.

[71 Ma Baojun, Karel Dejaeger, Jan Vanthienen, and Bart Baesens. Software defect prediction based on association rule classification. Available at
SSRN 1785381, 2011.

[8] M.C.M. Prasad, L.Florence,A.Arya,” A Study on Software Metrics based Software Defect Prediction using Data Mining and Machine Learning
Techniques International Journal of Database Theory and Application Vol.8, No.3 (2015).

[9] Okutan, Ahmet, and Olcay Taner Yildiz. "Software defect prediction using Bayesian networks." Empirical Software Engineering 19.1 (2014)
154-181

[10] Mrinal Singh Rawat, et. al.,(2012), “Software Defect Prediction Models for Quality Improvement: A Literature Study”, IJCSI International
Journal of Computer Science Issues, Vol. 9, Issue 5, No 2,

[11] Stefan Lessmann, Bart Baesens, Christophe Mues, and Swantje Pietsch. Benchmarking classification models for software defect prediction: A
proposed framework and novel findings. Software Engineering, IEEE Transactions on, 34(4):485-496, 2008.

[12] Yue Jiang, Bojan Cukic, and Tim Menzies. Fault prediction using early lifecycle data. In Software Reliability, 2007. ISSRE’07. The 18th IEEE
International Symposium on, pages 237-246. IEEE, 2007.

[13] Yue Jiang, Bojan Cuki, Tim Menzies, and Nick Bartlow. Comparing design and code metrics for software quality prediction. In Proceedings of
the 4th international workshop on Predictor models in software engineering, pages 11-18. ACM, 2008.

[14] Hongyu Zhang, Xiuzhen Zhang, and Ming Gu. Predicting defective software components from code complexity measures. In Dependable

Computing, 2007. PRDC 2007. 13th Pacific Rim International Symposium on, pages 93-96. IEEE, 2007.

46 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 04, Issue 02, June-2021

https://online-pdf-no-copy.com/?utm_source=signature

